
Exploitation of High Performance Computing in the FLAME Agent-Based
Simulation Framework

Simon Coakley, Marian Gheorghe, Mike Holcombe
Department of Computer Science

University of Sheffield
Sheffield, UK

Email: s.coakley@sheffield.ac.uk

Shawn Chin, David Worth, Chris Greenough
Software Engineering Group

STFC Rutherford Appleton Laboratory
Didcot, UK

Email: shawn.chin@stfc.ac.uk

Abstract—This paper describes the design of an agent-based
modeling framework for high performance computing. Rather
than a collection of methods that require parallel programming
expertise the framework presented allows modelers to concen-
trate on the model while the framework handles the efficient
execution of simulations. The framework uses a state machine
based representation of agents that allows a statically calculated
optimal ordering of agent execution and parallel communica-
tion routines. Some experiments with the current implementa-
tion and the results of using a simple communication dominant
model for benchmarking performance are reported. The model
with half a million agents is used to show that a parallel
efficiency of above 80% is achievable when distributed over
432 processors. Future improvements are discussed including
data dependency analysis, vector operations over agents, and
dynamic task scheduling.

Keywords-agent-based modeling; high performance comput-
ing;

I. INTRODUCTION

The Flexible Large-scale Agent Modeling Environment
(FLAME), http://www.flame.ac.uk, is a template driven
framework for agent-based modeling (ABM) on parallel
architectures. There are many agent-based simulation frame-
works available but their execution model does not permit
efficient and distributed simulation which is becoming more
important with large scale economic [1] and molecular
biology agent models [2], where either the execution time or
memory requirements outstrip single machine capabilities.
This paper discusses the issues for creating large scale
agent based frameworks focusing on the current FLAME
framework, its limitations and ideas for its improvement.

II. REVIEW OF PARALLEL AGENT-BASED MODELLING

FRAMEWORKS

Popular agent-based modelling implementations have
used synchronous agent updates where updated agent values
are available to other agents immediately. These frameworks
use user defined agent update schedulers, either where agents
are added and updated one by one (MASON [3], Repast [4]
and Swarm [5]) or all agents are asked to update and this is
achieved one by one (NetLogo [6]). This means they lose the

inherent parallelism of asynchronous agent update strategies
like that which are used for cellular automata based models.

A. Parallelism

Some of these popular frameworks have tried to retroac-
tively introduce parallelism:

With MASON (which uses Java) it is possible to create
parallel schedulers as threads to run on multi-core machines
but this makes it possible for agents on different schedulers
to access the same parts of a model simultaneously, and
introduce unforeseen errors.

Repast (which uses Java) has an expert-focused HPC
version [7] (which uses C++). The HPC version uses sched-
ulers on each memory independent process. Each scheduler
updates its local agents. Copies of agents and any updates
of these copies from other processes can be scheduled.
Management of scheduling and coordination of process data
synchronisation is handled by the user. The HPC version
provides some built-in functions for users to utilise but users
still need to schedule and coordinate the parallel aspects
themselves.

NetLogo (which uses Scala and Java) can only run models
in serial. BehaviourSpace is an extension that allows mul-
tiple runs of a model to be run in parallel on a multi-core
machine.

Swarm (which uses Objective C) does not have any
parallel capabilities.

Other agent based frameworks which mention parallel
capabilities include:

EcoLab [8] (which uses C++), uses serialisable agents
that can be sent to processes as a copy when needed. This
is similar to the model used by Repast HPC version.

Cougaar [9] (which uses Java) is an Agent Application
platform and not an agent based modelling framework.
Cougaar provides a built-in bulletin board for agents to
subscribe to and receive any notifications and is aimed at
real-time applications, not ABM simulations.

ABM++ [10] (which uses C++) is an ABM toolkit for
developing models on distributed memory architectures.
ABM++ provides an interface similar to the model used by

2012 IEEE 14th International Conference on High Performance Computing and Communications

978-0-7695-4749-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HPCC.2012.79

538

Repast HPC where objects can be serialised and moved be-
tween distributed compute nodes. A synchronisation method
is provided, and both time-stepped and distributed discrete
event time update mechanisms are provided for modelers to
utilise.

One of the main reasons that it has been hard to retrofit
parallelism to these popular ABM frameworks is that agents
can directly access other agent values: MASON directly
accesses other agents via a spacial or network class; Net-
Logo directly accesses other agents by creating agentsets;
Repast directly accesses other agents via built in methods;
and Swarm directly accesses other agents via the built-
in getNeighbor method. Therefore agents cannot be easily
partitioned over memory independent processes and the
whole of agent memory has to be copied to each process
that needs to access it like the solutions created by Repast
HPC, EcoLab and ABM++.

Some work has been done to execute ABM on GPGPUs
which have been cellular automata based [11], [12] or have
been an extension of FLAME on the GPGPU [13]. All have
shown exceptional speed increases but are very limited in
the scope and complexity of the models they can run. This
is due the smaller amount of memory available and the
homogeneous nature of the agents used in models.

III. OVERVIEW OF CURRENT FLAME FRAMEWORK

The current FLAME framework has been designed from
the start to be a inherently parallel ABM framework which
does not require the user to have any expertise in parallel
computation.

FLAME has evolved based on the requirements of dif-
ferent projects starting from a position aware framework
used for biological models to a position-agnostic framework
driven by a static scheduler and message board library
catering to economic models.

FLAME generates simulation code (in C) by parsing a
description of a model from a marked up XML document
and applying the data to code template files. The program
that does the parsing is called xparser which also (statically)
calculates the optimal execution order of agent functions.
The resulting simulation code is compiled with agent func-
tions written in C, supplied by the modeler, and the FLAME
communication library, called Message Board, to produce
the simulation program, see Figure 1. All parallel features
are auto-generated by the framework and do not need any
effort by modellers to utilise.

A. Agent Definition

Agents are defined based on the concept of Commu-
nicating Stream X-Machines [14] (CSXM); each agent is
represented by a acyclic state machine that characterises the
behaviour of the agent per iteration, see Figure 2.

Each state transition function has access to the internal
memory of the agent, as well as input and output streams
of information.

xparser

Simulation
Code

XMML
Model File Templates

C Compiler

Message Board
Library

Agent Function
Code

Simulation Result
States

Start
States

Figure 1. FLAME Templating Model

Message
Board X

F1

Message
Board Y

S3

Write

Memory

Read

S1

F2

S2

F3 F4

S4

Figure 2. Agent described using the Communicating Stream X-Machines
Model

To define an agent, modelers specify a set of state
transition functions to transition an agent from one state to
another. When linked together, these transition functions and
their associated states form the acyclic state machine that
represents the behaviour of the agent.

Agent instances are represented as a structure containing
the internal memory of the agent. Agent transition func-
tions take in this memory structure and update the values,
effectively transitioning the agent instance to the next state
ready to be consumed by the next function. The execution
of a transition function is repeated for all agent instances
of the associated type in the relevant state. Once all the
functions have been called (in the correct order so as to meet
dependencies) an iteration (time step) of the simulation is
complete. To provide transition functions with access to the
full memory structure, agent memory is stored as a list of
structures.

539

A simulation is started by providing the initial state of
each agent memory and once all agents have reached their
final state the resultant agent memory for the iteration is
written out, see Figure 1.

B. Agent Communication

In FLAME the input and output streams take the form of
message boards. Each message board handles the messages
of a single message type. Since message boards are the only
means in which agents communicate with other agents, this
makes the agent model inherently parallel. Each agent can
be handled independently as long as the input message board
contains the expected messages.

An example model can be seen in Figure 3 with two agent
types (A and B) and two message types (X and Y) with
their associated message boards. The first function of agent
A sends messages of type X (writes to message board X)
and the first function of agent B receives messages of type X
(reads from message board X). A similar exchange happens
with message board Y and associated agent functions.

C. Paralliseable Model Execution

The simulation can therefore be parallised by distributing
agents across disparate processing nodes and synchronising
the message boards to ensure that all agents see the same
set of messages.

For efficiency, agents are not allowed to read and write
to the same board from the same transition function. This
avoids the need to synchronise the boards on every single
write operation and the requirement to update agents one by
one. Message boards can only be written to and then read
from once per iteration step and they are wiped after each
iteration so that each iteration is a self contained simulation
run of the model.

The synchronisation of a board is initiated the moment all
writes have been completed, in effect each agent function
that outputs the type of message associated with the board
has been executed. The framework achieves this by calling
the sync start function provided by the Message Board li-
brary. This function is non-blocking and the synchronisation
process is performed in a background thread. The framework
is then free to execute other functions that do not depend
on the board in question. It is possible for multiple boards
to be synchronised concurrently.

Before executing agent functions that read messages from
a board the framework calls a sync complete function pro-
vided by the Message Board library. The function checks
the status of the synchronisation process, and returns im-
mediately if the synchronisation is complete. However, if
synchronisation is still in progress the function blocks until
completion.

To restrict the amount of data synchronisation it is an
advantage to know if a processing node requires a copy of
a message for its local agents to read.

When FLAME was originally aimed at biological models
[15], which used Cartesian space, the partitioning of agents
over processing nodes was achieved by partitioning the sim-
ulation space. Each message sent was given an interaction
radius for the distance agents had to be to be able to read the
message. Each node knew the simulation space controlled
by other nodes and so could filter messages that would not
affect agents on certain nodes.

FLAME was then used for location-agnostic economic
models [1] where the filtering of messages depended on a
multitude of factors. For example networked regions, salary,
cost, etc. Instead of a built-in Cartesian interaction radius
filter the filtering of messages was opened up to the modeler.
A model could now include, for each input to a transition
function, a modeler defined filter. The partitioning of agents
then became non-trivial, as it depended on a multi-layered
communication network linking different agent types, re-
gions and dynamic agent memory. As such a simple round-
robin approach was taken. To limit the amount of message
synchronisation between nodes, for each message board, the
agent filter data on each node are amalgamated and then sent
to all the remaining nodes. The remaining nodes can then
use the filter data to filter messages before they are sent to
the originating node.

D. Scheduling and Performance

An important aspect of attaining good performance is to
completely hide the communication cost by scheduling as
much computation as possible between functions that write
messages and those that read them. The communication bot-
tleneck for ABM is usually high as each agent is continually
communicating with other agents.

The scheduling of functions is handled by the framework
and is currently done statically. This is done by the xparser
program which parses agent definitions in a marked up
XML document then produces a directed acyclic graph
representing the dependency graph of transition functions.
The model seen in Figure 3 has the dependency graph seen
in Figure 4. It can be seen that message board X depends
on the first function of agent A and so on down through the
dependencies.

Each agent in a model will have its own function depen-
dency graph and they are coupled together by dependencies
on message boards. Every message board will be a descen-
dent of functions that write to it, and a parent to those that
read messages from it.

Using the function dependency graph, the xparser can
schedule the execution of agent transition functions such that
message producers are scheduled as early as possible and
message consumers as late as possible. This maximises the
amount of computation being performed while the synchro-
nisation process is in flight. This process is totally automated
and is directed by the dependencies determined by the state-
based model provided by the user.

540

Agent AAgent B

 X BF1

 Y AF2

BS1 AS1

AF1

AS2BS2

BF2

BS3 AS3

Figure 3. Example Model Definition

1

2

3

4

5

6

AF1

 X

BF1

BF2

 Y

AF2

Figure 4. Dependency Graph of Example Model

IV. ABM FRAMEWORK COMPARISONS

Large scale agent-based models require large amount
of memory as well as computing power. HPCs are able
to distribute the computational power and memory across
nodes but to effectively make use of this architecture requires
specialist knowledge that some ABM frameworks try to
solve.

Current HPC ABM frameworks, Repast HPC, EcoLab,
ABM++ provide in-built methods for modellers to use but

this still requires expert knowledge of HPCs to use. The
problem is that they all allow direct agent-to-agent memory
access. This means agent updates are synchronous and
requires them to copy the whole of agent memory between
processing nodes when an agent from one node needs to
access an agent from another node. The capabilities for this
are provided but the scheduling of agent updates and the
synchronisation of data between nodes must be managed by
the modeller.

For computational power GPGPUs have provided excep-
tional speed ups [11], [13]. By having to execute the same
functions at the same time ABM GPGPU frameworks use
asynchronous agent updates. This is because they are either
cellular automata based or are an extension of the FLAME
model for GPGPUs. This though means that they are better
suited for homogeneous agent models, where there is only
one type of agent with the same functionality. GPGPUs are
also restricted by their amount of on-board memory they
have direct access to. This can be solved by using multiple
GPGPUs but you then get the same memory independent
node problem as with HPCs.

Rather than providing in-build methods for modelers
to program their own simulation programs, the FLAME
framework provides a way to design agent models using a
formal modelling technique. By breaking down agents into
Communicating Stream X-Machines the agent-based model
is broken down into constitute components. This provides
some of the following strengths of this approach.

By defining agent transition functions as communicating
via streams of messages, in contrast to other HPC ABM
frameworks which allow direct agent-to-agent access, there
is not a requirement to copy the whole of agent memory
between nodes.

By defining each agent separately using state ordered
transition functions with defined incoming and outgoing
communication the execution of agent updates and handling
of communication routines can be automatically calculated
by the framework. This allows the integration of new com-
ponents into agents by adding new states and transitions to
the state machine representation. The scheduling of agent
updates is then automatically recalculated for the new defi-
nition.

By decomposing models into CSXM it is also possible to
use formal testing methods [16], [17] to test the components
and the complete system.

An example of a large scale model that uses FLAME
is the EURACE economic model [1]. It is too large and
heterogeneous to fully fit a GPGPU architecture and the
communication between agents would be too complicated to
manually calculate when agent memory needs to be copied
between nodes. The size of agent memory required for a
EURACE agent, about 1 MB, would alone would make
this prohibitive as 1000s of agents would need to be copied
multiple times across multiple nodes every time step.

541

Using the state machine based approach to define agents,
economic experts working on different areas of the EU-
RACE model created their own agent states and transition
functions and they were merged together when needed. The
model, in total, required 9 agent types, 185 agent functions
and 103 different message types (boards). Because FLAME
automatically handles the scheduler, the plug and play
(introduction and removal) of agents and agent functionality
is easily managed and does not require any user interaction.
This also made testing of the model easier as it was simple
to remove parts of the model to be replaced by dummy parts
that did not affect the parts being tested.

V. CURRENT FLAME BENCHMARKS

To give some example of the current ability of FLAME
to execute agent models on a HPC a simple model was used
to predict performance.

The model used for benchmarking is the Circles model -
a simplified molecular dynamics problem where each agent
represents a spherical object that moves in a 2D Euclidean
space based on the repulsive or attractive forces acting on it
from other agents.

This model is ideal for benchmarking the performance of
FLAME because:

• It is simple to understand, with little to go wrong
• It has minimal computational load
• It uses all-to-all agent communication (no message

filters), so the model is communication dominant
• Message sends are immediately followed by receives so

there is no opportunity for communication-computation
overlaps

• Load balance is easily achieved using round-robin
partitioning

The all-to-all agent communication represents a worst-
case scenario and so this provides a lower bound for
expected performance for a simple model1. In practice,
various techniques can be applied to substantially improve
performance; this includes the use of filters to reduce the
amount of communication and the scheduling of compu-
tation in between message sends and receives to overlap
useful computation with background communication tasks
(message synchronisation).

The machine used for benchmarking is a 432 core Fujitsu
PRIMERGY blade server with 36 nodes, each with 2 Intel
Xeon X5670 CPUs. Each CPU contain 6 cores each capable
of 2 simultaneous threads (HyperThreading).

The number of procs from now on refers to the number
of cores (or the number of MPI tasks/processes, which is
equivalent). Due to limited access to the machine, each
benchmark configuration is repeated only four times and in

1More complex models may involve simultaneous synchronisations of
multiple message boards, variable computational load, and various oppor-
tunities to reduce and hide communication overheads; this makes it a lot
harder to predict performance

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

P
ar

al
le

l E
ffi

ci
en

cy
, %

Number of Procs

7.66%

34.18%

55.74%
63.40%
67.12%

80.29%

10K
30K
50K
70K

100K
500K

Figure 5. Comparing the parallel efficiency for different population sizes

the few cases where the timings were drastically different,
the runs were repeated and the slowest ones discarded.This
is therefore by no means a through benchmark and serves
as a rough indicator of potential performance.

To determine the weak scaling2 of the model, the bench-
mark was repeated for different population sizes starting
from 10,000 agents. The population size was stopped at
500,000 agents due to the prohibitively long single processor
runs.

Figure 5 shows that scalability improves remarkably as
the population size increases. Using 432 processes, the 10k
agent run has a parallel efficiency of only 7.66% while the
500k agent run was able to maintain a parallel efficiency
above 80%. This shows in a worst-case scenario the com-
munication routines of FLAME, when given a suitably large
population size, can be very efficient.

By plotting the changes in iteration time for different
process counts (see Figure 6), a definite trend is seen in
the timings whereby the graph starts flattening off at about
120 processes for all population sizes. Of course, with the
limited number of points on the graph it is difficult to tell
where the actual inflection point is and how it changes with
population size.

Further benchmarks are planned to investigate the usage
of message filters on the Circles model and to also create a
location agnostic test model. This set of benchmark models
will inform any future improvements make to FLAME.

VI. LIMITATIONS OF THE CURRENT FLAME MODEL

The current FLAME model has provided a way to define
agents such that the framework can automatically execute a
simulation as efficiently as possible on a HPC without any
expertise required from the modeller. The current framework

2Defined as how the iteration time varies with the number of processes
for a fixed problem size per process

542

10-1

100

101

102

103

104

105

 0 100 200 300 400

T
im

e
pe

r
Ite

ra
tio

n,
 s

ec
on

ds

Number of Procs

10K agents
30K agents
50K agents
70K agents

100K agents
500K agents

Figure 6. Time per iteration for different population sizes

has some self-imposed limitations that can be removed and
are discussed in this section.

Agent functions have read-write access to all variables
within agent memory, which seems sensible at first, but in
hindsight is the cause of (or a contributing factor to) some
of the limitations of the current FLAME execution model.

A. Data Granularity

Because each agent function can potentially write to all
agent memory variables, the smallest unit of data is the
whole agent instance. Data partitioning for parallel execution
has to therefore be done at the agent level. Because there
are computational costs (transition functions) and commu-
nication overheads (message access) tied to each agent,
determining an optimum partitioning strategy is not straight
forward.

For example, optimising for a balanced utilisation and
computational load by equally distributing agents across
nodes can lead to excessive overheads due to all-to-all syn-
chronisation of all message boards. While grouping agents
by type to reduce communication load can affect scalability
due to uneven load as well as limit the simulation sizes due
to insufficient memory capacity in a heavily populated node.

B. Execution Path

Currently the memory access requirements of each transi-
tion function are not known to the framework. The xparser
therefore cannot make any assumptions about the dependen-
cies between the functions and has to rely solely on the state
diagram defined by the modelers.

More often than not, this leads to an execution graph that
is mostly sequential with very few concurrent paths. Such
a graph would be tall and narrow, and expresses very little
parallelism.

For example from the example model if we knew the
second function of agent B did not need to read a memory

1

2

3

AF1 BF2

 X

AF2

 Y

BF1

Figure 7. Updated Dependency Graph of Example Model

variable written by the first function of agent B then there
would be no dependency from the second to the first
function. Therefore the dependency graph seen in Figure 4
could be made to be short and wide, see Figure 7, which is
better for parallelism as more computation can be scheduled
at the same time.

VII. FUTURE IMPROVEMENTS OF FLAME

This section discusses some of the approaches that are
intended to be explored in order to maximise the parallelism
within the FLAME framework.

A. Data Dependency Analysis

To improve the parallel performance of the FLAME
framework, one needs to extract as much concurrency as
possible from a simulation. This involves breaking the sim-
ulation down into more parallelisable units then scheduling
their execution in a manner which fully utilises all resources
available to the execution environment.

One way to extract more concurrency over the current
framework is to have the memory access requirement of
each agent transition function explicitly defined by model-
ers. With this additional information along with the state
transition graph of the agent, one can build a more accurate
view of the dependencies between the different transition
functions.

Each agent memory variable can then be treated as an
independent entity, and each write to the variable is seen as
a transformation of the variable to a new version. Keeping
track of memory reads and writes allows us to determine
which functions can be run concurrently, and which ones
need to be run in sequence to ensure that the correct versions
of memory variables are accessed.

If a sequence of transition functions all read the same
memory variables and never update the values, they are
all reading the same version of data and therefore have no
dependencies on each other. These functions can be executed
concurrently (assuming there is no conflicting access to
message boards). The same goes for functions which access
different subsets of agent memory.

543

However, if a transition function has write access to a
memory variable, then subsequent transition functions are
considered to depend on the new version of the memory
variable and therefore have to wait till that information is
available.

B. Vector Operations

With the changes introduced in the previous subsection,
transition functions can be treated as operations on a pre-
defined set of independent variables. Since all the agents
of the same type have the same set of transition functions
and memory structure, we can effectively treat the transition
function as an operation on long vectors where each vector
element corresponds to an agent instance.

This shift in paradigm brings about many desirable fea-
tures:

• The granularity of data has been reduced from an agent
instance to a single memory variable. This allows us
more flexibility in the storage structure, and a more
fine-grained approach to data and task decomposition.

• Operations on long vectors are potentially more effi-
cient and can better utilise memory and caches. They
are also more amenable to different parallel program-
ming paradigms, e.g. SIMD, task farming, stream pro-
cessing, etc.

• Check-pointing and migration of data can be done more
efficiently - the elements in the long vectors are of equal
size and contiguous in memory so data packing and
buffering is no longer required. Furthermore, using the
new dependency graph, data can be written to disk in
stages as the final version becomes available.

• Transition functions can be treated as independent tasks
that can be executed in any order as long as its inputs
are available. This opens up many opportunities for
optimisation including dynamic scheduling of tasks,
multiple levels of parallelism, etc. This is discussed in
the following section.

C. Dynamic Task Scheduling

The function dependency directed acyclic graph (DAG)
generated based on the analysis of memory reads and writes
would implicitly encode the data dependencies. As long as
the function dependencies are met, each function would
effectively be accessing the correct versions of memory
and messages. This greatly simplifies the job of managing
dependencies and ensuring the correctness of the simulation.

Instead of converting the DAG into a static sequence of
function calls as done in the current FLAME implementa-
tion, the DAG can be represented as a list of tasks to be
consumed by a dynamic scheduler at runtime.

The use of a dynamic scheduler will allow the simulation
to adapt to different runtime conditions and the variations in
computational and communication loads that can occur in
agent based simulations. Furthermore, a common runtime

code can be used for all models. This leads to less code
generation for each model thus improving the testability and
maintainability of the framework.

During the simulation, tasks are added to a queue as
they become available (dependencies met) and the scheduler
selects tasks for execution based on priority levels assigned
to each task. Once all tasks have been executed, the iteration
is complete and the whole process is repeated for the next
iteration.

Each entry in the task list could contain the following
information:

• Task identifier: a unique handle for each task
• Task type: a label to determine which queue the task

belongs to (covered below)
• Dependency list: references list of tasks that must be

completed before this task can be executed
• Priority level: determines the priority of this task should

there be more than one task in the queue

1) Using Task Priority to Optimise Resource Utilisation:
The priority level indicates the urgency of each task. It
assists the scheduler in determining which task from the
queue should be executed first.

The priority level can be assigned based on many criteria,
for example:

• Sub-tree weight - a task that has many dependants
should be scheduled as early as possible.

• Task type - if there is only one queue, then the priority
mechanism can be used to ensure urgent tasks such as
message syncs are launched first, and non-urgent tasks
(such as check pointing) are only slotted in to fill the
gaps.

• Estimated run-time - if profiling information is avail-
able from previous iterations, we can predict a task’s
runtime and weight it accordingly.

• Vector length - if profiling information is not available,
we can use the size of the input vector length as an
initial estimate for weighing the task.

The priority levels should be recalculated periodically
based on the runtime statistics collected during the previous
iterations. The job of recalculating the priority level can itself
be wrapped up as a task that is managed by the scheduler.
The same goes for other framework level operations that
require significant use of available resources. This ensures
that none of the resources are oversubscribed.

2) Using Multiple Queues for Managing Different Re-
sources: Assigning a task type allows the opportunity to
support multiple task queues. Each queue can be assigned to
different resources that can be managed independently. For
example, we may choose to have separate queues for disk
I/O heavy tasks (for data check-pointing), communication
tasks (message syncs), and computation tasks (execution
of agent functions). In addition, different computation re-
sources that can operate independently (CPU, GPUs, and

544

other accelerators) can each have their own individual queue
and be managed separately.

3) Using Slots to Control the Number of Concurrent
Tasks Running on Each Resource: The scheduler queue is
designed to ration the use of a particular resource type; there
may be more than one instance of each resource (multiple
CPU cores), or the resource may be able to handle several
tasks simultaneously.

To take this into account, each queue is assigned one or
more execution slots which it can fulfil. At runtime, the
scheduler will attempt to maximise the use of resources by
keeping every slot filled with running tasks, replacing each
completed task with a new tasks from the associated queue.
The total number of execution threads during a simulation
would therefore be the number of slots, plus the execution
threads of the framework runtime (maybe one or more).

VIII. CONCLUSION

Compared to popular ABM implementations that utilise
synchronous agent updates and direct agent-to-agent access,
the FLAME framework has the ability to automatically
decompose agent based simulations into a dependency graph
of agent functions and communications that can be dis-
tributed across processing nodes. Because FLAME handles
the scheduler rather than the user the ordering of events
can be make to be as efficient as possible and automatically
fit the architecture it is on. By regenerating the schedule
each time the framework can easily handle the addition
and removal of parts of a model. This is important with
large models as different parts can be created by different
teams and have to be able to be integrated easily. Now that
this has been achieved with the current version of FLAME
there are many strategies that can now be utilised to further
the efficiency of simulations and their use of any available
resources. These include: a dependency graph generated by
analysing the memory accesses of each agent function; a
new execution model that will enable various opportunities
including more efficient data structures and better resource
utilisation using dynamical task scheduling.

ACKNOWLEDGEMENT

This work has been funded by EPSRC Grants
EP/I030654/1 and EP/I030301/1.

REFERENCES

[1] C. Deissenberg, S. van der Hoog, and H. Dawid, “EURACE:
a massively parallel agent-based model of the European
economy,” Applied Mathematics and Computation, vol. 204,
no. 2, pp. 541–552, October 2008.

[2] M. Holcombe, S. Adra, M. Bicak, S. Chin, S. Coakley,
A. Graham, J. Green, C. Greenough, D. Jackson, M. Ki-
ran, S. MacNeil, A. Maleki-Dizaji, P. McMinn, M. Pogson,
R. Poole, E. Qwarnstrom, F. Ratnieks, M. Rolfe, R. Small-
wood, T. Sun, and D. Worth, “Modelling complex biological
systems using an agent-based approach,” Itegrative Biology,
vol. 4, pp. 53–64, 2012.

[3] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan, “MASON: A multi-agent simulation environment,”
Simulation: Transactions of the society for Modeling and
Simulation International, vol. 82, no. 7, pp. 517–527, 2005.

[4] M. North, N. Collier, and J. Vos, “Experiences creating three
implementations of the Repast agent modeling toolkit,” ACM
Transactions on Modeling and Computer Simulation, vol. 16,
no. 1, pp. 1–25, January 2006.

[5] N. Minar, R. Burkhart, C. Langton, and M. Askenazi, “The
Swarm simulation system: a toolkit for building multi-agent
simulations,” Santa Fe Institute, Working Paper 96-06-042,
1996.

[6] Center for Connected Learning and Computer-Based Model-
ing, Northwestern University. Evanston, IL. (1999) NetLogo.
[Online]. Available: http://ccl.northwestern.edu/netlogo/

[7] N. Collier and M. North, “Repast SC++: A platform for
large-scale agent-based modeling,” in Large-Scale Computing
Techniques for Complex System Simulations, W. Dubitzky,
K. Kurowski, and B. Schott, Eds. Wiley, 2011.

[8] R. Standish and R. Leow, “EcoLab: Agent based modeling
for C++ programmers,” Proceedings SwarmFest 2003, 2003.

[9] A. Helsinger, M. Thome, and T. Wright, “Cougaar: a scal-
able, distributed multi-agent architecture,” Systems, Man and
Cybernetics, 2004 IEEE International Conference on, vol. 2,
pp. 1910–1917, October 2004.

[10] RTI International, Durham, North Carolina. (2009) ABM++.
[Online]. Available: http://parrot-farm.net/ABM++/

[11] M. Lysenko and R. M. D’Souza, “A framework for megascale
agent based model simulations on graphics processing units,”
Journal of Artificial Societies and Social Simulation, vol. 11,
no. 4, p. 10, 2008.

[12] B. G. Aaby, K. S. Perumalla, and S. K. Seal, “Efficient
simulation of agent-based models on multi-gpu and multi-
core clusters,” in Proceedings of the 3rd International ICST
Conference on Simulation Tools and Techniques, ser. SIMU-
Tools ’10, 2010, pp. 29:1–29:10.

[13] P. Richmond, D. Walker, S. Coakley, and D. Romano,
“High performance cellular level agent-based simulation with
FLAME for the GPU,” Briefings in Bioinformatics, vol. 11,
no. 3, pp. 334–347, February 2010.

[14] T. Balanescu, A. J. Cowling, H. Georgescu, M. Gheorghe,
M. Holcombe, and C. Vertan, “Communicating stream X-
machines systems are no more than X-machines,” Journal of
Universal Computer Science, vol. 5, pp. 494–507, 1999.

[15] T. Sun, P. McMinn, S. Coakley, M. Holcombe, R. Smallwood,
and S. MacNeil, “An integrated systems biology approach to
understanding the rules of keratinocyte colony formation,” J.
R. Soc. Interface, vol. 4, pp. 1077–1092, 2007.

[16] F. Ipate, “Complete deterministic stream X-machine testing,”
Formal Aspects of Computing, vol. 16, pp. 374–386, 2004.

[17] R. M. Hierons and M. Harman, “Testing conformance to a
quasi-non-deterministic stream X-machine,” Formal Aspects
of Computing, vol. 12, pp. 423–442, 2000.

545

