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bstract

Simulation software is often a fundamental component in systems biology projects and provides a key aspect of the integration of experimental
nd analytical techniques in the search for greater understanding and prediction of biology at the systems level. It is important that the modelling and
nalysis software is reliable and that techniques exist for automating the analysis of the vast amounts of data which such simulation environments
enerate. A rigorous approach to the development of complex modelling software is needed. Such a framework is presented here together with
echniques for the automated analysis of such models and a process for the automatic discovery of biological phenomena from large simulation
ata sets. Illustrations are taken from a major systems biology research project involving the in vitro investigation, modelling and simulation of

pithelial tissue.
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. Introduction

Many natural systems consist of individual entities that inter-
ct with each other in relatively simple terms to exhibit a more
omplex, aggregate behaviour. As an example high-level phe-
omena, such as wound healing and tumors, are the cumulative
esult of low-level cellular interactions within the epidermis.
dentifying the simple microscopic interactions between the
ow-level components is crucial for a full understanding of the

ore complex macroscopic behaviour.
Without the help of computers, modelling approaches have

sually involved manually sifting through biological data and
eriving differential equations that approximate the ’average’
ehaviour of the system as a whole. The problem with such
pproaches is that they fail to capture the large numbers of local
nteractions between components that are the cause of the high-
evel behaviour. Consequently research is increasingly turning
owards bottom-up modelling approaches, in the hope of build-

ng more realistic models that capture these interactions and
n the process provide deeper insights into the reasons for the
igh-level behaviour.
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Parallel computation

Agent-based modelling has been shown to produce very use-
ul methods and results in the field (cf. Xavier and Foster’s work
n microbial biofilms Xavier and Foster, 2007). Models are gen-
rated from the bottom-up, constructing for example, molecules
r the cells as individual active components, or agents. Once the
owest level agents have been identified, rules that govern their
nteraction can be generated, which results in molecular inter-
ction models, cell societies, etc. allowing data, structures and
unctions to evolve using concepts of emergence. The process
ies in experimental biology with computational techniques to
andle complexity at various levels and makes it easy to process,
tudy and predict conclusions from the available data.

There are various environments which allow modellers to use
gent-based modelling to investigate different models. Various
rameworks have been released to facilitate this and some of
hem have been summarized in Table 1. Both Xavier and Foster
2007) and Railsback et al. (2006) provide detailed comparisons
f various platforms by implementing similar models on each
f them.

Most of these frameworks are designed to be specific to the
omains they are applied in, repast, for instance is designed
or social sciences. Allowing an agent-based framework to be

eneric enough to allow any kind of agent simulation has been
challenge over the years. In this paper we introduce flexible

arge-scale agent-based modelling environment (FLAME)1, a

1 (http://www.flame.ac.uk).
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Table 1
Comparison of commonly used frameworks

SWARM JADE MASON RePAST FLAME

Software methodology Programmed in objective C,
and implemented over a
nested structure

Uses FIPA protocols Programmed in Java and
implemented over a
layered structure

Programmed in Java Programmed in C and
designed using
X-machine approach

Visualisation 3D 3D 3D 2D 2D and 3D
Parallel or serial Both. Need to wrap

objective-C commands in
Java for parallel

Both Both Both Both. Uses HPC and MPI
message for faster
communication
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xamples of models
executed

Sugarscape, variety from
other disciplines

Virus epidemics,
sugarscape

exible agent-based framework, which allows agent-based sim-
lations in any domain. Model specifications are based upon
ormal X-machines (Holcombe and Ipate, 1998). These are gen-
ralised state machines that include an internal memory, which
rovides a mechanism for avoiding many of the state explo-
ion problems that conventional state machines can suffer from.
lthough traditionally used to specify conventional software

ystems, our work has applied X-machines to provide a formal
asis for the specification of agent-based models of biologi-
al systems (Coakley et al., 2006; Sun et al., 2007). These
-machine structures allow agents to carry internal memory data

hat can be updated as simulations continue.
X-machines enable the specification of agents at a level of

bstraction that matches the biologist’s conceptualisation of the
ystem. Instead of having to adjust the model to fit the constraints

f a particular programming language, systems can be specified
n terms of their constituent processes and structures. Once a

odel is specified, FLAME is able to automatically generate

e
r
d

Fig. 1. FLAME mod
irus epidemics,
garscape, traffic
mulation

Mostly social science
projects

Skin grafting, economic
models

imulations that incorporate efficient communication between
gents and can be executed on a variety of parallel computa-
ion platforms. The FLAME framework has been designed from
he outset for use on large-scale supercomputers and is capable
f efficient simulation of models involving many millions of
gents. Simulations executed on FLAME have shown that large
umbers of agents can be used with only a minor communication
verhead.

Fig. 1 provides an outline of the general modelling process.
ne factor that is of particular import, and that is central to this
aper, is the ability to validate a model and to discover novel
spects of the model’s behaviour that might be of interest to
he biologist. This is crucial and can be very challenging as the
omplexity of models increases.

This paper describes a formal, agent-based approach to mod-

lling biological systems. The following section provides a
ationale for our work, and particularly our emphasis on vali-
ation and the discovery of new facts from our models. Section

elling process.
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describes the X-machine modelling approach, and details
ts implementation with respect to high-performance comput-
rs. Section 4 provides a case study, demonstrating the use of
LAME to model the in vitro behaviour of skin cells. Section 5
escribes our use of an established tool for reverse-engineering
roperties from software systems to discover novel (and possi-
ly erroneous) properties models and applies it to the skin cell
odel. Finally Section 6 contains conclusions, along with our

uture work.

. Building Trustworthy Scientific Systems

There have been a number of cases where incorrect software
as affected the accuracy of the data that has been regarded as
orrect. Recently (Joosten and Vriend, 2007) large sets of data
ere withdrawn from the Protein Data Bank repository because

he software used to generate the data was seriously flawed.
Building correct software is a challenge on any application

omain and there are no easy solutions to the problem. Many
mportant scientific software systems have evolved from exper-
mental pieces of software often developed by scientists with
ittle or no training in software engineering. These systems have
ecome very complex and yet at their core there may be software
hat is potentially flawed. As programs evolve through multiple
ersions and technologies the problems get compounded. Soft-
are that works correctly on one type of computer platform may
ehave rather differently on another which has a different archi-
ecture. As this happens it may not be obvious that the numbers
eing generated are wrong without an extensive programme of
esting and validation analysis.

The sudden growth of systems biology has raised a number
f questions about our ability to understand complex systems
hrough computational modelling—and thus the use and analy-
is of software. Systems biology combines systems modelling
ith large-scale experimental biology often using vastly com-
lex bioinformatics data sets. The simulation data produced from
odels is usually massive and has to be analysed. Information

iscovery is thus a vital component of systems biology and has
eceived little attention so far. To deal with the complexity of
ystems biology modern computing techniques are needed: soft-
are for model development, making use of advanced software
esign methods when building models; software for validation,
sing advanced techniques for validating models; software test-
ng, the model may be right but the implementation may be
awed. They key point is that its too complicated to do all this
y hand.

Hatton (2007) has analysed the source code of a number of
cientific applications and found many examples of programmes
hat were seriously incorrect. In fact, this research poses the
uestion of what can we rely on in terms of using software to
nderstand and predict complex biological phenomena. If some
f this data is being used in medical treatments or the analysis of
he possible effects of drugs and therapeutic interventions then

ives could be put at risk.

Models of biological systems are becoming increasingly
omplex and this complexity is increasingly difficult to
anage. For example, many CellDesigner (http://www.systems-
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iology.org/cd/) models are very intricate and contain an
verwhelming amount of information. This complexity can
ften obscure those relationships and features within the model
hat are particularly important to the biologist. Biological mod-
ls are usually adjusted over time. They are prone to faults
nd are often maintained by different people. Isolated changes
o a model will often occur in succession, not taking each
ther into account, and can, as a result, have a degenerative
ffect on the model as a whole by introducing unforeseen alter-
tions to its behaviour. The overall complexity of the model
ncreases and maybe no-one really understands the model any

ore.
A more systematic process for model sharing and version

ontrol is needed. Once a model exceeds a certain level of com-
lexity, it becomes very difficult to ensure that it is correct. Large
ystems are arduous and difficult to validate (a process that has to
e carried out manually). Although a system can be simulated to
nsure that its output conforms to laboratory observations, this
s often carried out on an ad hoc basis, and the behaviour of the

odel is rarely exercised systematically.
Models also need to be described in a more suitable lan-

uage than the details of source code, something that biologists
an understand and that revolves around concepts, metaphors
nd processes that they understand rather than the intricacies of
oftware development methods.

The basic framework that we discuss in this paper is built
round a simple concept that can be used as a basis for describing
nd defining the essential components in a complex biological
odel. Each system is conceived to be a collection of, often dis-

arate, entities which we call agents. They may, themselves, be
omplex systems and so many models will have a hierarchical
tructure. Each of these agents has its own life cycle from cre-
tion to removal and will behave in different ways depending on
here it is and what is going on its location and what stage of

ts life cycle it is in. These factors can be defined using a sim-
le diagrammatic notation and captured into a textual summary
ased on XML. There will be many types of communication that
ill go on between the agents and this is also defined—it will

nfluence what each agent does.
The whole model is then aggregated into a software program

utomatically and the simulations can then be performed. This is
escribed further in the next section and illustrated in Section 5.

. Developing Correct Models with the FLAME
ramework

The increasingly widespread use of agent-based models
ithin the field of systems biology means that more emphasis
eeds to be applied to their formal verification and validation.
s the systems become more complex, simulating them will
ecome increasingly computationally expensive. The FLAME
ramework has been developed to address these two concerns. It
s based on a formal modelling paradigm that is both accessible

o the biologist, but also permits the use of well-established state

achine analysis and testing algorithms for the sake of verifica-
ion and validation. It also incorporates a number of mechanisms
o ensure that the simulation of the model can be distributed and

http://www.systems-biology.org/cd/
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xecuted in parallel on a variety of high-performance computing
latforms.

.1. X-machines and FLAME

Development methodologies proposed for agent-based mod-
ls are mostly based around abstract representations like UML.
or a concise definition, X-machines offer a more formal com-
utational model that specifies the exact data transformations
nd control flow. State machines have been used extensively in
he past to describe the control logic for low-level hardware and
oftware applications.

X-machines (Holcombe and Ipate, 1998) are a generalisa-
ion of conventional state machines that permits the complex
ehaviour of agents to be expressed abstractly, using the famil-
ar notion of states and transitions. However, unlike conventional
tate machines, X-machines contain a set of processing functions
hat are tied to each transition and operate upon a global mem-
ry. Thus, instead of merely choosing the next state by reading
n input symbol, an X-machine chooses its next state by looking
t the current state of its memory as well as the current input.
he benefits of using this representation are twofold:

. Complex units of behaviour can be wrapped into “processing
functions”, and thus provide a flexible means of abstraction.

. The basic structure is still in the form of a state machine,
which means that it remains intuitive to read, and applicable
to established testing and verification techniques.

Formally, X-machines are defined as an 8-tuple XM =
Q, �, �, M, �, F, q0, m0) where:

Q is the finite set of states.
� is the alphabet of input symbols (messages that can be
received from other X-machine agents).
� is the alphabet of output symbols (messages that can be sent
to other X-machine agents).
M is the possibly infinite set of memory configurations.
� is a set of partial functionsφ that map an input and a memory
configuration to an output and a (possibly) different memory
configuration, φ : � × M → � × M.
F is a partial function that determines the next state, F : Q ×
φ → Q. This can be described as a state transition diagram,
where each transition is labelled by function φ.
q0 is the initial state.
m0 is the initial memory configuration.

In practice, the process of defining an agent using this
ramework is relatively straightforward. For each agent a
tate transition diagram is created that outlines the high-level
ehaviour of the agent in terms of its abstract processing func-
ions. Then, each individual processing function can be defined
n detail, in terms of its memory requirements (pre- and post-

onditions), inputs and outputs.

Our FLAME framework provides an infrastructure that can
ake specifications in the form of the X-machines described
bove, and simulate their behaviour on a large scale. Fig. 2

t
b
m

Fig. 2. X-machine agent example.

llustrates how an X-machine agent operates in FLAME. The
ramework maintains a global list of messages that are sent
etween agents. An agent in state S1 receives some input
belonging to �) from another agent and, depending on its cur-
ent memory state, executes function F 1 (as defined in F). This
esults in a new memory state, and an output message (belonging
o �) is sent to another agent. The entire simulation (which can
onsist of thousands of agents) is executed in steps where, in a
ingle step, every agent in the system is updated concurrently.

If a particular function in one agent depends on the output of
nother function in a different agent, a communication synchro-
isation point is added to make sure that any output messages
ave arrived for input. In this way a simulation can be spread
cross separate processors because each executes the same order
f agent functions and synchronises communication at the same
ime.

On a large scale, certain models can depend on a substan-
ial amount of communication between individual agents. If at
very iteration all of the agents have to process the entire list
f messages, this can result in a communication bottleneck, and
mpact on the overall performance of the system. The FLAME
ramework ameliorates this by introducing filters. These can be
ttached to each agents and ensure that it only processes relevant
essages. As an example, a filter in a cellular simulation might

e that a particular cell can only be affected by messages that
re sent by other cells in a particular radius.

Once the conceptual model of the system has been generated
in terms of X-machines), it has to be translated into a format that
an be directly executed. This is done automatically by FLAME.
he modeller can provide an abstract X-machine description
f their model, and FLAME automatically translates it into C
ode that can be compiled to be run on the desired computing
rchitecture.

.2. Scalability on High-Performance Computers
Agent-based models can consist of thousands of agents, and
he process of simulating their behaviour on a large scale can
e computationally very expensive. Although the expense is in
any ways inevitable (there is an essential amount of processing
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hat needs to be carried out), it can be substantially reduced by the
se of filters (as described above), along with the fact that agent-
ased models can be largely executed in parallel. The FLAME
ramework was constructed with the aim that models should
e executable on a wide range of high-performance computing
rchitectures. This should however not require any specialist
ntervention from the modeller.

Compatibility with a wide variety of high-performance archi-
ectures was ensured by using the Message Passing Interface
MPI) (Foster, 1995) framework for C. When the models are
ranslated into C, they adhere to the MPI interface. The com-

unication synchronisation points ensure that concurrently
xecuting agents remain in sync with each other.

To establish that the framework is scalable and can be used
or large scale models a model was built to provide benchmarks
or performance on a variety of supercomputers. The model is
et on a two-dimensional plane, where each agent represents
randomly sized circle, and the circles overlap. Each agent

as to ensure that it is not overlapping with other agents at
he end of each iteration, moving into free space where nec-
ssary. This was executed using (one million randomly placed
ircles) on the following high-performance systems (with the
elp of our colleagues at the Science and Technologies Facilities
ouncil):

SCARF: A cluster with 360 2.2 GHz AMD Opteron processor
cores and 1.296TB total memory. Communication includes
gigabit networking and a Myrinet low latency interconnect.
HAPU: An HP cluster with 128 2.4 GHz Opteron cores, with
2 Gb memory per core, and a Voltaire InfiniBand interconnect.
NW-GRID: A cluster with 32 SUN x4100 server nodes con-
taining 2 Dual Core 2.4 GHz Opterons with 8 Gb of memory
each.
HPCx: An IBM cluster based on the pSeries 575 system made
up of 160 clusters of 16 1.5 GHz POWER5 processors and
32 GB memory. Each cluster is connected via IBM’s High-
Performance Switch (HPS).
MANO: An IBM Blue Gene/L machine comprised of 1024
nodes of dual-core 700 MHz PowerPC chips with the second
CPU usually dedicated IO and communications.

The results are shown in Fig. 3. The number of processors is
hown on the x-axis, and the amount of time consumed is shown
n the y-axis. The results show that substantial gains are made
rom 1 to 49 processors, and that the increase reduces somewhat
ith higher numbers. This is perhaps more of a reflection on

he characteristics of the circle problem than FLAME; different
enchmarks resulted in similar scales of reduction, but varied in
erms of the number of processors that were required. Ultimately,
LAME successfully compiles the X-machine models in such a
ay that they can be efficiently distributed to run in parallel.

.3. Providing Input X-machine Models and Visualising

utput

The main rationale for using X-machines to model biological
ystems is that they provide an intuitive means to specify rela-

m
w
e
f

Fig. 3. Benchmarks from high-performance computers.

ively complex systems. This is particularly important because
he biologists should be able to reason in terms of the model,
nd not need to be concerned with the low-level details. In this
espect, it is particularly important that there is a straightforward
eans to present FLAME with the model, and that the output of

he model is presented in a way that is intuitive to the modeller.
FLAME currently reads a model in as an XML file (this is

escribed in more detail by Coakley et al. (2006)). XML is, like
PI, widely supported, which makes it easy to specify user-

riendly X-machine editors. This facilitates the generation of
pecifications in specific domains, and is part of our ongoing
ork.
Understanding and interpreting the output of agent-based

imulations is a particularly challenging area. Every iteration,
he agents change their state, which results in a potentially vast
umber of state trajectories. For models that deal with loca-
ion and cellular kinetics, FLAME includes a three-dimensional
isualise that permits the biologist to interact with it (zoom in
nd out, or rotate). Some sample screen shots appear in Section
, which also elaborates on some alternative techniques that can
e used to explore and interpret the output data.

. Case Study: Keratinocyte Model

As part of the Epitheliome project at Sheffield, Sun et al.
2007) have developed a model of the in vitro behaviour of
kin cells using FLAME. The ultimate application is the devel-
pment of methods to produce reconstructed human skin for
atients with heavy skin loss—for example through chronic
urns, wounds or skin disease.

The aim of the model is to understand how cells prolifer-
te and organise themselves into layers of skin tissue through
olony formation. The model is biologically useful, because it
an predict, on the basis of the colony epicentres, how or whether
wound will heal. This is because a colony’s maximal size is

ounded. Therefore, if the remaining colony epicentres are too
ar apart after the wound, the gap will never close. The colony

odel also explains the morphology of the healing process—i.e.
hy the two sides of a scratch wound do not meet in straight

dges, but rather with ’bumps’ caused by circular outgrowths
rom colony epicentres.
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As the main purpose of the model was to learn about cell
olony formation, many complex elements of the natural biol-
gy have been abstracted away. A simple physical model is used,
long with a simple approach to cell cycling and there are no
omplex cell signalling mechanisms. Each cell is simply mod-
lled as sphere on a virtual culture dish. In our model, cells stay
t a constant size and shape.

Each cell agent stores its location co-ordinates in its local
emory, and behaves according to programmed rules for move-
ent and cell division, as described below. There are four types

f cell: stem cells, transit-amplifying (TA) cells, committed cells
nd corneocytes. Stem cells are found in the centre of the colony,
re fairly static and proliferate so long as there is space to do so.
A cells can also proliferate as long as there is space, but can
lso migrate around the culture plate, depending on the ambient
evels of calcium. Committed cells are TA or stem cells that have
ndergone a differentiation process, they can no longer prolif-
rate, corneocytes are dead cells that are found on the top levels
f skin tissue.

.1. Physical Model

The physical model simply applies a force to overlapping
ells to separate them. The physical model is also built so that
ifferent cells exert different forces, for example stem cells bond
trongly to themselves and the culture plate (which is why they
emain static), as do committed cells and corneocytes.

.2. Cell Cycle

Each stem and TA cell follows a cell cycle whereby they
ivide after a pre-determined period, i.e. a stem cell will produce
wo daughter stem cells, and a TA cell two daughter TA cells.
f a cell is ’contact-inhibited’, that is, there is no space around
o divide it goes into a special dormant state of the cell cycle
eferred to as G0.

.3. Differentiation

Differentiation is the process whereby a cell changes from
ne type to another. Initially stem cells divide and cluster (Fig. 4).
hen the cluster reaches a certain size however, cells on the

luster edge differentiate into TA cells. In practice this rule is
oded by each stem cell scanning its vicinity. If it cannot find
certain number of fellow ’mate’ stem cells within the range
1, it differentiates. When TA cells are a distance d 2 away

rom the stem cell epicentre of the colony, they differentiate into
ommitted cells (Fig. 5). Stem and TA cells that have also been in
0 for a certain period of time also differentiate into committed

ells (Fig. 6). Finally a committed cell will ’die’ and become a
orneocyte after a further period of time(Fig. 7).
.4. Stratification

Skin cells self-organise into layers. In the model, daughter
ells are pushed up a layer if there is no lateral space (Fig. 8).
ells are green.

The model was investigated in terms of a number of bio-
ogical issues. In particular, following extensive simulations,
he prediction was made that for normal human keratinocytes
he position of stem cells would influence the pattern of cell

igration post-wounding. This was then confirmed experimen-
ally using a scratch wound model (Sun et al., 2007). However,
here may be many other interesting properties that the model
osses that would be of biological interest, some, perhaps, unex-
ected. A more systematic method is needed to analyse the
odel behaviour.
Fig. 5. Mechanism for stem to TA cell differentiation.
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Fig. 6. TA cells now dominate the edges of the colony. As the colony gets bigger
TA cells far away from the stem cell epicentre differentiate into committed (dark
green) cells.

Fig. 7. Stem and TA cells that have been contact-inhibited for a certain period
of time differentiate into committed cells.
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a software system. They provide a mathematical description of
Fig. 8. Stratification.

. Discovering Properties of Biological Models

Although it is straightforward to specify at a microscopic
evel (i.e. individual agents), the vast numbers of agents and
otential agent interactions makes emergent behaviour difficult
o understand, validate and maintain.

Although emergent behaviour is easily observable at a macro-
copic level (e.g. we can see cells clustering into colonies via
simple visualisation), it is difficult to understand, in terms
f individual agents, why the clustering is occurring. What are
he (interesting) aspects of system behaviour that are pertinent
o this behaviour? Manually identifying these from the usually

w
e
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ast domain of potential agents and agent interactions can be
xtremely challenging.

This can in turn lead to problems when validating the model.
lthough the behaviour of the system might seem valid super-
cially (i.e. a visualisation might seem to behave as expected),

t is again difficult ensure that this is the case. The major benefit
f agent-based modelling (that complex collaborative behaviour
an be elicited from simple individuals) is a double-edged sword;
mall faults in agents can equally amount to gross misbehaviour.
s a simple example, during the development of the skin cell

olonies described in Section 4, one version of the model (erro-
eously) started producing large tumorous clusters of cells,
imply because of the fact that the modeller had forgotten to
pecify that virtual cells should adhere to the virtual Petri-dish.

Even if the model behaviour is correct to begin with, ensuring
hat it remains so becomes increasingly challenging as it evolves.

odels (especially larger ones) tend to be maintained and devel-
ped by teams of modellers and developers, who can often
ntroduce conflicting changes to the model. This is exemplified
y the BioModels database (http://www.ebi.ac.uk/biomodels/),
here many of the models have a long history of modifica-

ions, submitted by peers in the community. Isolated changes
o the model will often occur in succession, not taking each
ther into account, and can as a result have a degenerative effect
n the model as a whole. This compounds the aforementioned
roblems of comprehension and validation.

These problems are not specific to agent-oriented models, or
ven the discipline of computational biology as a whole. They
re analogous to the problems that arise during software devel-
pment, where they have been studied for decades. As is the
ase with biological models, software implementations rapidly
ecome too intricate to understand in their entirety. Software,
oo, is often validated on a superficial basis. Like BioModels,
number of large software repositories exist that enable multi-
le developers to concurrently add lots of changes to software
ystems, thus introducing the same problems of degeneration
hrough evolution that occur with biological models.

The most important component of any (software engineering)
olution to the aforementioned problems is the use of abstract
pecifications. These can be used for documentation, to make it
asier for developers to communicate and understand the system.
hey can be used as the basis for a number of powerful validation
nd verification techniques to ensure that changes to the system
emain consistent with the requirements. Most importantly, a
umber of techniques have been developed (e.g. Ernst et al.,
001) that attempt to extract these specifications directly from
n implementation, so that only a minimal amount of effort needs
o be invested by the developer, but they can still take advantage
f the benefits.

.1. Specifying Systems with Invariants

Invariants are means of formally specifying the behaviour of
hat is expected of the system at particular points during its
xecution, without going into the procedural details of how this
s achieved. To specify a system with invariants, it is divided into
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ts constituent functions, and each function is annotated with its
espective invariants. The following types of invariant can be
sed to annotate a function:

Pre-condition: Specifies the conditions that must hold
between certain variables before the function is executed.
Post-condition: Specifies the conditions that must hold
between certain variables once the function has finished exe-
cuting. Together, the pre- and post-conditions summarise the
effect that a function has on the state of the program as a
whole.
Scoped invariant: Specifies the relationships that must hold
between certain program variables within the scope of a
program element such as a function, loop, or object (in an
object-oriented program).
A program that is annotated with such invariants becomes
menable to a host of powerful analysis techniques that can be
sed to address the problems mentioned above. Invariants are

i
c
p
o

able 2
elected properties from Kerationcyte model
s 93 (2008) 141–150

seful for program comprehension and documentation, because
hey specify the essential, required behaviour of the system with-
ut delving into the details of its implementation. Because it is
asier to understand a program that is annotated with invari-
nts, it becomes easier to validate by inspection. As the program
volves as a result of bug-fixes and other changes, it is straight-
orward to analyse, using a host of simple checkers that ensure
hat the essential functionality of the software is not affected,
nd that the fix to one fault does not in turn introduce a new
ne.

In practice, software engineers rarely annotate their code with
nvariants. As the system evolves, the invariants are often not
ept up to date. Ernst et al. (2001) accept that developers do
ot routinely produce specifications, and devised a technique
o reverse-engineer the specifications from the software system

tself. Their Daikon technique observes the software as it is exe-
uted (multiple times), and records the values of variables at
articular points in the program (e.g. the entry and exit points
f methods to record pre- and post-conditions).
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Daikon operates by attempting to fit relationships between
ariable values at each point to a set of predefined rules
invariants). These rules hold true for every execution that was
bserved. If they are correct, they can be inserted into the pro-
ram in the form of assert statements to ensure that they are not
roken as the software evolves. Besides the benefit with respect
o preventing the introduction of new errors during evolution, it
as also become a powerful basis for automated unit testing.

.2. Discovering Invariants of Biological Systems

The ability to automatically reverse engineer invariants is
ust as valuable with biological models as it is with software
ystems. Such invariants can help the modeller to understand
nd discover potentially erroneous or even novel aspects of sys-
em behaviour. Unlike software systems, biological models tend
o be experimental; they are not designed to fit a well-designed
urpose, but rather to investigate high-level behaviour that may
ot yet be known to the modeller. What is therefore particu-
arly valuable from this perspective is the potential for Daikon
o make explicit this novel behaviour, by exposing any latent
elationships between (seemingly) unrelated variables across the
ystem.

Invariants of biological models are discovered in a similar
anner to invariants of software systems; the model is simulated
ultiple times, and variable values are recorded at particular

oints. Given the set of traces, Daikon identifies those rules that
re satisfied by all of the traces at the recording points. It is
p to the modeller to select the set of variables that should be
nalysed, along with the set of points during the execution at
hich they should be recorded. If the task is to find novel, hid-
en relationships between variables, it makes sense to include
large range of variables in the analysis, and to record them

t frequent intervals. If on the other hand the task is to debug
r investigate the model with respect to a specific aspect of
ehaviour, it makes sense to only select a few relevant vari-
bles, and to sample them at the relevant points. This can result
n a more focussed set of invariants that are more likely to be
elevant.

We have used Daikon to investigate the behaviour of
cMinn’s Keratinocyte model (Sun et al., 2007), introduced

n Section 4. The output from the simulation was processed by
aikon, which suggested 297 invariants that govern the relation-

hips between the various variables in the model. The invariants
ere particularly good at summarising the movement of the dif-

erent cell types; a selection is discussed below to provide an
dea of the sort of rules that are reverse engineered.

Table 2 shows a small selection of the identified invariants
or each of the four cell types, along with a snap shot from
he phases in the simulation during which the particular cell
ypes were at their most active. In all cases the x and y co-
rdinates of the cell fitted within a 500 × 500 area (which was
he size of their virtual “Petri-dish”. One interesting rule is that,

or stem cells, z = 0 is an invariant, which means that stem
ells never leave the dish—they are always on the base layer
this rule was not coded in to the model, but reflects correct
ehaviour). Stem cells start from a random, stationary position

F

H

s 93 (2008) 141–150 149

n the dish, and Daikon correctly inferred that, for the cell not
o have travelled there cannot have been any force exerted on
t, and its direction cannot have changed. The invariants show
hat TA cells are much more motile than any of the other cell
ypes, accounting for the eventual even distribution across the
ish. Finally, perhaps one of the most interesting observations is
he semi-layered epithelial structure. Stem cells are restricted to
he base, along with TA cells these divide and push TA cells up
o 43.68 �m. Committed cells (post-mitotic cells) get pushed up
urther (up to 79 �m) by the dividing stem and TA cells. Finally,
he top layer of the skin consists solely of corneocyte cells, which
re constantly pushed to the surface by the committed cells
elow.

. Future Work and Conclusions

The FLAME framework has been used to model a wide vari-
ty of biological systems, particularly epithelial tissue (Coakley
t al., 2006; Walker et al., 2006; Sun et al., 2007). These have,
oupled with laboratory experiments, led to the discovery of a
umber of novel facts about the behaviour of skin tissue cells.
urrent work aims to extend and integrate these models with
ach other.

The framework provides a mechanism for the discovery of
roperties of models through the analysis of the simulations
hich could be either faults in the model or new biological

nsights. The use of this approach has been of great value in
he analysis of several complex biological systems, including
he models of epithelial tissue. In our future work we aim to
nvestigate the use of other potential discovery techniques to
rovide further insights into model behaviour.
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