

Model for Environmental and Economic Policy

Bo Li

boblee@xjtu.edu.cn

Computer Teaching & Experiment Center

Xi'an Jiaotong University

Sheffield Feb 23 2012

Content

Background

Two Approach of economic policy analysis

Solution for environmental and economic policy simulation system

Simulation scenarios of Policy Experiment

■*C*onclusion

Background

Environmental issues have become increasingly prominent, Especially the problem of water pollution In China

 \bullet Environmental and economic policy use the Price, tax etc. as financial and economic Means, adjusting the economic interests of relevant actors, to achieve the protection of environmental and the coordinated development of environment and economy

The policy simulation has become an important scientific tool for the formulation of economic policy

Goal

- Provide the model , with the Weihe river basin as an example, to explore interactions and the evolution mechanism of the watershed changes in the environment, human economic activity and government policies.
- 2. Support on Policy Design or Analysis of integrated watershed management, for promoting regional social and economic sustainable development

Center of China

WeiHe River basin

Annual Plan

- The first year(half year):
- 1. survey the experiences of evaluating environmenteconomic policy and agent-based simulation,
- 2.study the environmental behavior of industrial enterprises,
- 3.explore the impact of policy on the environment and corporate,
- 4.carry on agent-based on
- heterogeneous interaction of environmental policy design simulation research

5. Integrate of decision support systems and

adaptive intelligent interface research with GIS

Annual Plan

The second year:

1.Collect watershed data,

2.dentify the impact of major environmental issues and environmental factors of the Weihe River,

3. Summarize the evolution rule of the pollutionintensive industries evolution.

4.Construct agent simulation platform, building agentbased high-performance policy control simulation system

Content

Background

Two Approach of economic policy analysis

Solution for environmental and economic policy simulation system

Simulation scenarios of Policy Experiment

■*C*onclusion

Computable general equilibrium-CGE

- General equilibrium theory
- Use a set of equations to describe the economic system of supply, demand and market relations, the variable includes the number of goods and production factors, market prices and factors' incomes. Under the constraint of a series of optimized conditions, Solve these equations, Getting the quantity and price when All markets have reached the balance between supply and demand

Agent-based computational economics -ACE

•Complex adaptive system

•Using agent-based computer simulation to analyze and simulate real economic complex adaptive system, is lots of independent and interaction agent evolution of computing and research methods to the entire economic system

The applications of Agent-based simulation method

•ASPEN

• Simulate the economy, allowing changes in laws, rules and policies, allowing separate analysis or comprehensive analysis of the different sectors in the economy, also accurately simulate the behavior of the economic basic decision sector

The applications of Agent-based simulation method

•EURACE

•Establish a policy analysis economic model, using interact agent of the different roles and the different markets to analyze the role of economic policy in the macro model, and analyze the mutual influence of different types of policy measures

Content

Background

Two Approach of economic policy analysis

Solution for environmental and economic policy simulation system

Simulation scenarios of Policy Experiment

■*C*onclusion

西安交通大學

Models and entity

- Agent
 - Households
 - Corporations
 - •The government
 - The central bank

- Market
 - Labor market
 - Goods market
 - Production market
 - Credit market

•...

EEPSS

Events Period

Yearly		Monthly		Every Day
First Day	Promulgation of new policy	First Day		Price determination by firms
	Firms expand their scale			Food demand by families
Some Day		Some Day	Production quantity determination by firms	
			Financial determination by firms	
			Labor demand by firms	
			Production by firms	
Last Day	Statistics released	Last Day	Financial conditions Statistics by firms	

Parameter & Output files

Parameter files

- Creating Parameters
 Including number of every Agents, simulation period, etc.
- Initializing Values
 Initializing Values of the state variables of every Agents.
- Policy control variables
 <u>Policy-relevant variables</u>

•Output files

- Macroeconomic-related data
 Including GDP, total amount of emissions, total household consumption, etc.
- Agents State
 - Output the detailed state of Agents, including asset status of the families, financial status of the firms, etc.

Algorithm

The GALCS is used to the production quantity determination by firms in the system.

①Firms develop production plans and determine increase or decrease in production every month.

②According to the following four-dimensional data of firms recently.

(1) Product prices is rising or falling ;

- (2) Sales of the product is increasing or decreasing;
- (3) Profits is rising or falling ;

(4)Stock is rising or falling.

We can determine the 16 states of a firm. Each state corresponds to a probability vector, including the probability of increase production, to maintain the production and reduce production.

Algorithm

③Based on the change of profit, a firm can determine the correctness of this month decision-making.

If the profit increase, then increase the corresponding probability in the state of the determination and decrease the other probability corresponding to other determinations.

If the profit decrease, then decrease corresponding probability and increase the other probability .

Content

Background

Two Approach of economic policy analysis

Solution for environmental and economic policy simulation system

Simulation scenarios of Policy Experiment

■*C*onclusion

The price of water

- Simulate the environmental and economic conditions of Weihe River in the 2009-2014 five-year period according to the water price of Xi'an in 2009;
- 2. After increase industrial water price to 3.85 and 4.30 yuan per cubic meter, simulate the environmental and economic conditions of Weihe River in the 2009-2014 five-year period.
- 3. Increase industrial water price year by year according to the program of Xi'an Price Bureau, Simulate the environmental and economic conditions of Weihe River in the 2009-2014 five-year period.

Simulation scenarios program

4. According to the industrial classification and the production process, increase industrial water price of the high-polluting and backward technology firms, as the table shows, simulate the environmental and economic conditions of Weihe River in the 2009-2014 five-year period.

Industry	Technology	Water price	
	Backward	3. 85	
Food	General	3. 65	
	Advanced	3. 45	
	Backward	4. 35	
Nondurable goods	General	4. 05	
	Advanced	3. 85	
	Backward	4. 45	
Durable goods	General	4. 25	
	Advanced	4. 05	

Simulation scenarios

5. After the introduction of the behavior of technology improvement, simulate the environmental and economic conditions of Weihe River in the 2009-2014 five-year period.

▲ 西安交通大學

Industry	Technology level	Needed funds o f Technology improvement	Water Consumption O f u n i t product	Pollution of unit product
Food	Primary	0	0.05	0.2
	Intermediate	100000	0.04	0.1
	Senior	1000000	0.035	0.05
Nondura ble goods	Primary	0	0.5	0.4
	Intermediate	200000	0.4	0.3
	Senior	2000000	0.35	0.1
Durable goods	Primary	0	10	0.5
	Intermediate	500000	8	0.4
	Senior	5000000	6	0.3

Content

Background

Two Approach of economic policy analysis

Solution for environmental and economic policy simulation system

Simulation scenarios of Policy Experiment

■*C*onclusion

HPM&S

•China has **not** establish the mathematical model (or computational model) that used to simulate the mutual interaction of the economic and environment by now.

•Therefore, the introduction of agent-based modeling technology to the field of environmental protection and policy simulation has important theoretical and practical significance.

Any Question

Thank you so much!

My student questions

- 1.Is households should be divided into the cities and countryside in consideration of the situation in china?
- 2. How to judge a behavior of one agent is important or not?
- 3.We determine the price of product by GALCS, at the same time, determine the yield by GALCS too, is it feasible?
- 4. In the simulation system, the number of agents is determined by what principle?
- 5.In the development of ASPEN/EURACE model, how to keep each market's design and realization, and in the end how to integrate the markets together, use interface or other means?
- 6. How can we run an agent-based simulation system without detailed data?
- 7.If we want to get some detailed data, for example, we want to get detailed information about factory, how can we do our survey? Can you talk it based on EURACE
- 8. How to judge whether a price is reasonable or not in the market economy?
- 9.Which data(results) is the most important (or we most care about)in the simulation?

My questions

- •How to hide the technical detail for improving the performance of FLAME
 - Automatic scalability
- How to port the domain model by FLAME to different hardware platform
 X10

Co-operation?

Simulation scenarios program

